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ABSTRACT

This study seeks to gain some insight into the role played by horizontal friction in the 
dissipation of an oceanic front. For this purpose, a two layer model is used. The barotropic, or 
external, mode is filtered out. To simplify the equations, the wind stress terms are omitted. Two 
cases are considered: the coastal front and the upper ocean front. In the first case, it is shown that 
the larger the Ekman number, the lesser time it would take for the front to dissipate. In the second 
case, it is demonstrated that the average time scale of dissipation, due to horizontal friction, of an 
upper oceanic front is in the order of decades. Oceanic fronts do represent areas of horizontal 
convergence of different water masses. This convergence is due to the change of the curl of the 
wind stress pattern. Because of the fact that the wind stress is not considered in this study, it can 
be concluded that upper ocean fronts should be a permanent feature. This is the case of the Gulf 
Stream and the Kuroshio front.

RESUMEN

En el presente trabajo se estudia el papel jugado por la fricción horizontal en la disipación de 
un frente oceánico. A tales efectos, se ha utilizado un modelo de dos capas, en el cual el modo 
externo, o barotrópico, ha sido eliminado. A fin de simplificar las ecuaciones, los términos que 
representan la forzante del viento, no han sido incluidos en este trabajo. Se consideran dos casos: 
los frentes costeros y los de alta mar. En el primer caso, se demuestra que cuanto mayor es el 
número de Ekman, menor es el tiempo de disipación del frente costero. En el segundo caso, se 
demuestra que el tiempo promedio de disipación de un frente en alta mar es del orden de décadas. 
Los frentes de alta mar representan zonas de convergencia de masas de agua de distintas 
características. Dicha convergencia está asociada a las variaciones del rotor de la forzante del 
viento. Dado que la forzante de viento no ha sido considerada en este trabajo, se deduce que los 
frentes de alta mar deberán ser una característica permanente del océano. Tal es el caso de la 
corriente del Golfo y del frente de Kuroshio.

1. INTRODUCTION

Oceanic fronts occur on areas of increasing turbulence and convection. Their 
main characteristic are sharp gradients of salinity and/or temperature. It is a region of 
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increasing motion (Roden, 1976). Usually oceanic fronts represent the discontinuity 
between two different water masses where one or more of the following properties: 
temperature, salinity, density and velocity, are different.

Oceanic fronts occur at all depths. Fronts are also variable in time. They intensify 
and decay, in response to changes in the atmospheric and oceanic flow patterns. Examples 
of permanent oceanic fronts are the Antarctic Circumpolar Current, the Subarctic and the 
Subtropical oceanic fronts in the North Pacific Ocean.

Oceanics fronts differ from their atmospheric counterpart in many ways. In the 
atmosphere, both the temperature and the density fronts coincide. Thus, atmospheric 
frontal zones are extremely baroclinic (Palmen & Newton, 1969). The first attempts in 
the understanding and the physical interpretation of atmospheric fronts started early in 
this century. The classical Norwegian school was the first one which attempted to 
understand this meteorological phenomenon. The studies of Bjerknes (1919) and 
Bergeron (1928) are classical in this matter. In the case of oceanic fronts, if the 
temperature and the salinity fronts do have the same geographical location, the density 
front is weak, or nonexistent. The baroclinicity is small. Such is the case of the 
subtropical Pacific Ocean Front (Roden, 1974).

Frontogenesis in the North Pacific is due to differential vertical and horizontal 
advection of the Ekman type. A given configuration of the wind stress field may lead to 
frontogenesis in some regions, and to frontolysis in other areas. Furthermore, in the upper 
layer of the ocean, the formation and maintenance of oceanic fronts depends of the 
horizontal shear of the wind stress (Roden, 1977).

Camerlengo (1982) studied the large scale response of the Pacific Ocean Subarctic 
Front to different forms of atmospheric forcing, i.e., atmospheric fronts, extratropical 
cyclones, wind stress curl, etc. His results agree with Roden's (1972) observations, in the 
sense that the dynamic response of the subarctic front to momentum transfer is limited 
to the layer between the sea surface and the high stability layer. The only exception was 
represented by the passage of a strong extratropical cyclone, where an upwelling of the 
order of 20 m is observed at the wake of the cyclone. Due to the fact that the time scale 
of dissipation of an upper oceanic front is an integral part of ocean dynamics, a series of 
theoretical experiments are conducted. This is the first attempt in this regard.

2. MODEL FORMULATION

2.1. Statement of the problem
A two layer model is considered in this study. The vertically averaged equations of 

conservation of mass and continuity (barotropic mode) are filtered out. For this purpose, 
the lower layer is chosen to be infinitely deep. Therefore, the currents, in that particular 
layer, are set to be zero. The model equations for this study are similar to MacVean &
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Woods (1980) and Camerlengo (1982).
The analysis was limited to the first layer, or the first baroclinic mode. This type of 

model is, sometimes, referred as the one a half layer model (Busalacchi & O'Brien, 1980). 
The east-west and north-south velocity components, u and v, correspond to the horizontal 
coordinates x and y (positive in the east and north direction, respectively).

To simplify the equations to be used, the following hypotheses are made:
1) the time scale of dissipation of the oceanic front is larger that the time scale of the 
perturbation produced by the wind stress; 2) the longitudinal frontal length scale is 
smaller than the latitudinal length scale. Thus, the derivatives with respect to x are 
neglected as compared to the derivatives with respect to y; 3) the oceanic front is 
geostrophically balanced; 4) since the meridional length scale of the oceanic front in the 
upper layer has an order of magnitude of ten kilometers, the f-plane approximation is 
used; 5) the zonal wave number, k, is much smaller than 1/L. Therefore, only long waves 
are considered; and, 6) the vorticity at the front, represented by du/ dy, is much smaller 
than the planetary vorticity, f.

The pressure in the upper layer, layer 1, will have the form

(1)

where Pa represents the atmospheric pressure; hj , the depth of the upper layer; p the 
water's density; H, the total depth; g, the acceleration due to the earth's gravity; and z, the 
vertical coordinate, which is measured from the bottom. The gradient of Pj yields

(2)

where g* = g (pj -p2 )/pj represents the reduced gravity. As usual, the horizontal 
fluctuations of the atmospheric pressure are neglected. For convenience, the subindex 1, 
representing the upper layer, will be omitted.

2.2. Equations of motion

With the above assumptions, the equations of motion for the upper layer are:

(3)
(4)
(5)

where f, is the Coriolis parameter; A, the horizontal diffusion coefficient of momentum; 
h, upper layer thickness and t, time. In our study, the forcing due to the wind stress terms

22



Alejandro L. Camerlengo and Monica I. Demmler

are neglected in order to retain only the forcing due to the frictional terms.
This non-linear set of equations are difficult to solve. Therefore, it is assumed that 

the frictional effect will slowly change a steady, inviscid initial front, and a perturbation 
solution is presented by assuming that friction has a weak effect. For this steady oceanic 
front to persist, the interface, h , must be balanced initially by a zonal velocity of the form

23

The terms v’d u’/d y, v’d v’/d y, d (h’ v’)/d y, A d2 u’/ d y2 and A d2 v’/ d y2 are of 
second order. Thus, they are considered negligible. The terms fu and -g*dh /dy represent

(9)

(10)

(11)

where the perturbation variables are denoted by primes. The perturbation variables are 
assumed to be of order A (Pedlosky, 1979). The equations for the upper layer then 
become

(8)

The viscous perturbation solutions are obtained by assuming the value of A to be 
very small. Let

where h represents the mean value depth; L, the longitudinal frontal length scale; Ah, the 
maximum amplitude of the interface perturbation. By continuity, the meridional velocity, 
v , is initially set to zero.

3. ANALYSIS OF THE PROBLEM

(7)

where the subscript "o" stands for the basic state.
The height of the upper (first) layer, h , has an hyperbolic profile, centered in the 

middle of the north-south extent of the basin, W, of the form:

(6)
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the basic state balance. In order to filter out the gravity waves, the term dv’/dt is omitted 
(Pedlosky, 1979). With these simplifications, the above equations are reduced to linear 
perturbation equations of the form

where V (=v’h ) is the mass transport in the upper layer. The boundary conditions are such 
that the meridional mass transport, V, is set to be zero at both the northern and southern 
boundaries. It is of interest to note that V is independent of time.

As h (y) is a known function, the coefficients of (17) are known. Therefore, this 
equation can be rewritten as
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(12)

(13)

(14)

To solve this system, a single equation for v' is first needed. Replacing the value of 
u' in (12) yields

(15)

(16)

(17)

Applying the operator (g*/f) 3 ( )/ d y to (14), it follows that

The addition of (15) and (16) yields

where

and

(18)

(19a)

(19b)
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In order to cover a wider range of oceanic fronts, two different meridional length 
scales, L, are considered. The chosen dimensions are 1 and 50 kilometers, respectively. 
In the first case, an approximate value of F(y) is:

(20)

while in the second case, F(y) has an approximate value of:

(21)

Using the first approximation, (18) may be rewritten as:

(22)

where a2 = f2 (g* h0 )_1 is the inverse of the squared Rossby radius of deformation. For 
this particular case, an analytical solution can be obtained. If the Ekman number is set to 
be equal to 0.1, the resulting value of A is then 10 m sec. The scaling of (22) shows that 
the first and third terms are the largest ones, by two orders of magnitude. Therefore, (22) 
has the form

(23)
The analytical solution of this expression is

(24)

The integration, with respect to time, of the continuity equation yields a perturbation 
expression for the interface, h', of the form

(25)

Considering the maximum absolute value of the y-derivative of the meridional mass 
transport, the time scale of dissipation, T, is defined in such a way that

(26)

where |d / d y |M represents the maximum absolute of such derivative. The value of h' 
is arbitrarily set up to be equal to 10 meters. For different values of A and L, different 
values of |d V/ d y |M may be obtained (Table 1).

However, this solution is restricted to oceanic fronts of the order of one kilometer.
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As stated previously, the upper oceanic fronts have a meridional length scale of the order 
of ten kilometers. A new scaling of (22), using this same length scale, shows that the 
three terms of the equation are comparable. Thus, the full equation has to be solved.

Table 1. Time scale of dissipation, T, for different values of A, L,|d V/ 5 y |M, using 
equation (22).

A (m sec'1) L (km) |d V/ d y |M (m sec'1) T(sec)

10 2 2 IO'5 5 105
10 1 8 IO'5 1.25 105

1 2 2 10'6 5 106
1 1 8 IO"6 1.25 106

In using a meridional length scale of 50 kilometers, (22) has the form:

(27)

The general solution of the corresponding homogeneous equation (27), Vc(y), is

(28)

where V = h,V = hIih dy and C and C are arbitrary constants. The method of variation 
of parameters is used to solve the nonhomogeneous equation (22). This method requires 
the replacement of the constants C and C by two arbitrary functions, c(y) and z(y). These 
arbitrary functions will be determined in such a way that the particular solution, V (y), 
has the form

(29)

The arbitrary function, c and x, must satisfy certain conditions in order to satisfy the 
nonhomogeneous ordinary differential equation. These conditions are

(30a)

(30b)

where %y, Cy, Vly and V2y represent the meridional derivatives of the functions % ,
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V! and V2, respectively; and vji (y) represents the forcing function defined by

(31)
The system of equation (30) gives us a solution for the functions and £ These

values are:

(32a)

(32b)

where the wroskian, W(V1 ,V2 ), is equal to one.
The values of % and £, at each grid point, are determined by numerical integration. 

To achieve this purpose, Simpson's rule is used. Knowing the values of % and £, a final 
expression for the meridional mass transport, V, can be numerically evaluated at each 
grid point. Such an expression has the form

(33)

Again, by plotting the function d N! d y versus y, a maximum absolute value of the 
former function may be determined for different values of A and L (Table 2).

Table 2. Same as table 1, but using equation (27).

A (m sec ) L (km) | d V/ 5 y | M (m sec’1 *) T(sec)

1 10 5 10 109
1 50 7 10 1011

10 10 5 10 108
10 50 7 10 1010

100 10 5 10 107
100 50 7 10 109

Kao (1980) showed that the structure of an oceanic front in a quasi-steady state
depends on the Ekman number, E. Furthermore, in that same study, it is shown that for
E « 1, the structure of the front is insensitive to changes in the value of E.

3. CONCLUSIONS
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A study dealing with the dissipation of an oceanic front due to horizontal friction has 
not yet been conducted. This is a first such an attempt. In our study, the value of E was 
allowed to vary from 10 to 10. In choosing this particular range, the cases of coastal front 
and upper ocean front are addressed.

Due to the fact that oceanic fronts occur in all horizontal space scales, the value of 
L is allowed to vary between 1 and 50 km. In the first case, we attempt to study the 
dissipation of coastal fronts. Therefore, the chosen value of L is in the order of 10 m 
(Table 1). On the other hand, in the second case, we attempt to study the dissipation of 
an upper ocean front (Table 2). In this case, L is chosen to be on the order of 10 m 
(Roden, 1976).

In the first case, A is chosen to vary between 1 and 10 m sec. Due to the almost 
constancy in the (chosen) value of L, the value of the Ekman number (E = A/(f L )) highly 
depends on the value of A. In our case, the value of E varies from 10 to 10. An uppermost 
value of A = 10 m sec is chosen such that E % 10. It is shown that the larger the value of 
E, the smaller the value of T (Table 1). It is concluded that the larger the value of 
horizontal friction, the lesser time it would take for the coastal oceanic front to dissipate.

In the second case, we attempt to study the dissipation of an upper ocean front (Table 
2). In this case, the values of A are chosen to vary between 1 and 100 m s. The resulting 
Ekman number varies between 10 to 10. This range in the value of E corresponds to the 
large scale ocean circulation (Pond & Pickard, 1978). For the smallest value of E, T 
would be in the order of one year.

Forcing due to the wind stress terms are neglected in this study. However, the 
existence of the Pacific Ocean subarctic front is a natural consequence of the convergence 
of two different water masses. This convergence is triggered by the wind stress pattern. 
The average time scale of dissipation (due to horizontal friction) of upper ocean fronts 
is in the order of decades (Table 2). It can concluded that upon consideration of the wind 
stress terms, upper ocean fronts should be a permanent feature in the ocean. This is 
precisely what happens in the real world. Examples of such permanent fronts are the 
Kuroshio front, the Gulf Stream, the subtropical and the doldrums fronts.
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